Atoms or molecules {ligand}| can covalently or ionically bond to central atom, in different configurations depending on orbitals.
number
Central atom can bind coordination number of ligands. Central atom can have six ligands, at octahedron corners {octahedral}, at two d, one s, and three p orbitals. Cubic ligand arrangement has six bonds, at cube corners, at two d, one s, and three p orbitals. Central atom can have four ligands {square planar}, at square corners, at two d, one s, and three p orbitals. Tetrahedral ligand arrangement has four ligands, at tetrahedron corners, at one s and three p orbitals.
central atom
Metal ions have five d orbitals. z^2 and x^2 - y^2 orbitals point along axes and have higher energy. Electrostatic repulsion causes xy, yz, and xz orbitals to point between axes and have lower energy. If field is weak, energy difference is small, and all electrons go to all five d orbitals, with parallel spins, as in Hund's rule. If field is strong, metal d-orbital energy differences are large, spins pair, and electrons stay in the three lower-energy d orbitals.
Physical Sciences>Chemistry>Inorganic>Chemical Bond
5-Chemistry-Inorganic-Chemical Bond
Outline of Knowledge Database Home Page
Description of Outline of Knowledge Database
Date Modified: 2022.0224