5-Chemistry-Biochemistry-Drug-Structure

drug structure

Drug-receptor geometry {drug structure} is a physico-chemical property and can be quantitative.

structure-activity relationships

Drugs have structure-activity relationships (SAR), which can be quantitative (QSAR). Drugs have property-activity relationships.

activity

Drug activity equals physicochemical-variable function. Drug activity relates to concentration, partition coefficient, or product formation. Stages have probabilities. Drug activity is proportional to concentration product, complexing probability, changing probability, and partitioning probability.

activity: complex formation

Drugs form complexes with receptors {intrinsic activity, complex}. Drugs {chemotherapeutic drug} can cause chemical reactions or conformational changes. Drugs {pharmacodynamic drug, complexes} can make complexes but do not change conformation or cause reactions.

Complex-formation probability is formation-reaction equilibrium constant. Equilibrium constant depends on both equilibrium type and substituent electronic influence on reaction center. log(K) = k1 * sigma + k2 {linear free energy equation, structure} (LFE). log(1 / concentration) = k1 * sigma + k2. Electronic influences are universal and have tables of values. Equilibrium type results from multiple regression analysis of simultaneous equations.

activity: partitioning

If hydrophobicity affects drug structure, partition coefficient affects activity. log(K) = k3 * pi + k1 * sigma + k2 and log(1 / concentration) = k3 * pi + k1 * sigma + k2. Partition coefficients are universal and have tables of values.

activity: transport

Drugs have to get to target site. Drug transport involves diffusion, active transport, adsorption, binding to serum proteins, or membrane interactions. Mechanisms that oppose drug transport are excretion, metabolism, and localization in fat. Excretion is faster for hydrophilic. Metabolism is faster for hydrophobic. Localization in fat is faster for hydrophobic. Drug transport affects drug activity. log(K) = k3 * pi + k1 * sigma + k2 - k4 * pi^2. log(1 / concentration) = k3 * pi + k1 * sigma + k2 - k4 * pi^2. Drug transport factors are universal and have tables of values.

structure

Molecule structure depends on atom types, atom numbers, chemical bonds, spatial relations, and atom locations. Features are either present or absent, with no interactions.

structure: molecular connectivity indices

Kier and Hall used features such as electrotopologic state index, valence, molecular shape and flexibility {kappa index, structure}, branching, unsaturation, cyclization, and heteroatom position. They found molecular connectivity indices, based on Randic's branching index, calculated from hydrogen-suppressed chemical graph or skeleton structure. For example, atoms can have number of sigma electrons contributed {simple delta index, structure} or number of valence electrons {valence delta}.

structure: molecular orbital

Quantum-mechanical structure description uses molecular orbital (MO) theory. Molecular orbitals depend on electron location and energy. Total conformation energy gives probability. MO typically ignores solvents.

Highest occupied molecular orbital gives the most-reactive electron for electron-rich nucleophilic molecules. Lowest unoccupied molecular orbital gives the most-reactive electron for electron-poor electrophilic molecules.

MO can test reaction paths and find thermodynamic information, by checking energies in different configurations.

Molecular orbitals can be linear combinations of atomic orbitals (LCAO). Atomic-orbital contribution probability is linear-coefficient squared, and point charge is probability sum.

structure: interactions

Comparative Molecular Field Analysis (CoMFA) uses partial least-squares to analyze grid around site atom and find grid-point hydrophobic, electrostatic, and steric interactions.

structure: ab initio

Ab initio analysis uses electron locations to find charges, electrostatic potentials, dipole moments, ionization energies, electron affinity, and activation energies. Semiempiric analysis uses only valence electrons and parameterizes core electrons. Modified neglect of differential overlap (MNDO) ignores overlaps. Perturbative configuration interaction using localized orbitals (PCILO) uses perturbations. Varying bond angles, bond lengths, and torsion angles can find minimum energy and preferred conformation.

structure: axial-equatorial configuration

Non-conjugated-ring substituent positions can be in ring plane {equatorial configuration} or perpendicular {axial configuration}.

structure: branching

Carbon chain can have fork {branching}.

structure: ionization degree

Molecule can have charge {degree of ionization} {ionization degree}.

structure: dipole moment

Opposite charges can separate by distance.

structure: electrostatic potential

Electric potential energy comes from electric field.

structure: molecular similarity

Molecules can be similar in 3D atomic configuration, atom pairs, chemical graphs, electron densities, field potentials, molecular fragments, molecular properties, molecular surfaces, steric volumes, or topological/information theory indexes.

structure: orientation

Molecule spatial alignment is at receptor site.

structure: radical

Atoms can have one electron in outer orbital.

structure: singlet or triplet state

Orbital state can have paired electrons {singlet state}. Orbital state can have unpaired electrons {triplet state}.

Chemical Abstracts Service

Connection tables number non-hydrogen atoms, name atomic elements, name atom number to which they connect, and name atom types {Chemical Abstracts Service} (CAS).

Chemical Descriptor Space

Molecules can be vectors, including chemical activity, in abstract space {Chemical Descriptor Space} (CDS).

combinatorial chemistry

Base compounds {building block} can attach one to four small molecules {combinatorial chemistry} to add functional groups and make compound libraries with molecular weights 300 to 750.

connection table

Tables {connection table} can describe three-dimensional structures.

connectivity matrix

Matrices {connectivity matrix} can graph molecular connections.

Coulombic potential

Electrostatic fields make potentials {Coulombic potential}.

desolvation

Polar solute can cross lipid membrane if hydrogen bonds to water break {desolvation}. Polar solute with fewer hydrogen bonds to water and lower hydrogen-bonding potentials can diffuse more easily.

electrotopologic state index

Indexes {electrotopologic state index} can depend on topology structures.

encoding tag

Molecular markers {encoding tag} can track combinatorial-chemistry molecules.

hetero

Molecule atoms {hetero} can be not carbon C or hydrogen H. Hetero can refer to solvent, non-solvent, water, ion, or ligand atoms.

heterocyclic compound

Compounds {heterocyclic compound} can have rings with atoms other than carbon.

hydrophobicity

Molecular regions can repel water {hydrophobicity}.

isoform

Cytochrome P450 has types {isoform}.

library of compounds

Combinatorial chemistry makes compound permutations {library of compounds}.

nearest neighbor table

Tables {nearest neighbor table} can rank different compounds by similarity.

pharmacophore

Superimposed molecules show constants across diverse molecules and so identify sites and reactions {pharmacophore}.

similarity matrix

Molecules have atomic properties, functional groups, and molecular properties {similarity matrix}.

superoxide anion

Oxygen can have positive charge {superoxide anion}.

virtual compound library

Possible compound permutations can be in database {virtual compound library}.

Wiswesser line notation

Strings {Wiswesser line notation} (WLN) can uniquely describe three-dimensional structure.

X-ray structure

X-ray crystallography patterns {X-ray structure} can indicate atom positions.

Related Topics in Table of Contents

5-Chemistry-Biochemistry-Drug

Drawings

Drawings

Contents and Indexes of Topics, Names, and Works

Outline of Knowledge Database Home Page

Contents

Glossary

Topic Index

Name Index

Works Index

Searching

Search Form

Database Information, Disclaimer, Privacy Statement, and Rights

Description of Outline of Knowledge Database

Notation

Disclaimer

Copyright Not Claimed

Privacy Statement

References and Bibliography

Consciousness Bibliography

Technical Information

Date Modified: 2022.0225