Raman spectroscopy

Spectroscopy {Raman spectroscopy} can study plastics, waxes, pure organic molecules, complex ions, or non-spherical molecules, by polarizing non-polar bonds with UV or visible light and analyzing infrared radiation.

scattering

UV or visible light scatters from molecules to polarize them, with +2 or -2 total angular momentum. Rayleigh scattering is elastic, with unchanged wavelength. Raman scattering is inelastic, because it makes dipoles, so vibration and rotation energy levels affect it.

polarization

Polarization causes infrared-light emission or absorption at vibration or rotation energies. Raman-scattering vibrations are not infrared. Raman-scattering rotations are infrared. Raman lines can have lower frequency {Stokes line} or higher frequency {anti-Stokes line}.

Related Topics in Table of Contents

Physical Sciences>Chemistry>Analytical Chemistry>Spectroscopy

Whole Section in One File

5-Chemistry-Analytical Chemistry-Spectroscopy

Drawings

Drawings

Contents and Indexes of Topics, Names, and Works

Outline of Knowledge Database Home Page

Contents

Glossary

Topic Index

Name Index

Works Index

Searching

Search Form

Database Information, Disclaimer, Privacy Statement, and Rights

Description of Outline of Knowledge Database

Notation

Disclaimer

Copyright Not Claimed

Privacy Statement

References and Bibliography

Consciousness Bibliography

Technical Information

Date Modified: 2022.0224