bivector

Vectors are directed line segments. Two vectors with same origin {bivector} represent a directed plane segment. Bivector attitude, orientation, rotation, or gradient is direction in space of plane-segment normal compared to coordinate axes. Bivector direction, rotation sense, or circulation is sense of rotation of first vector into second vector (clockwise or counterclockwise). Bivector symbol is /| {wedge symbol} between two vectors.

The wedge product of two vectors makes a bivector. Wedge product squared equals negative of first-vector magnitude squared times second-vector magnitude squared times sine of angle A between vectors squared: (a /| b)^2 = - |a|^2 * |b|^2 * sin^2(A). Therefore, bivectors are imaginary numbers, and bivectors are not vectors or scalars.

Bivector magnitude is the parallelogram area: |a| * |b| * sin(A). If bivector magnitude equals zero, vectors are parallel, collinear, or linearly dependent.

Three vectors with same origin {trivector} represent a directed volume segment. Trivector symbol is wedges between vectors: a /| b /| c. k vectors with same origin {k-vector} represent a directed k-volume segment. k vectors can combine to represent a directed k-volume segment. k-vectors can have parallel and perpendicular components.

Cross products of two vectors make a third vector perpendicular to both vectors. Wedge (exterior) products express cross products using only components in the plane made by the two vectors. For two vectors a = x1 * i + x2 * j and b = y1 * i + y2 * j, cross product is (x1*y2 - x2*y1) * k, and wedge product is (x1*y2 - x2*y1) times the ij bivector: (x1*y2 - x2*y1) * i/|j.

Two dimensions have one basis bivector: e12. Three dimensions have three basis bivectors: e23 = i, e31 = j, e12 = k. Three-dimensional bivectors have form a * e23 + b * e31 + c * e12.

Geometric product of a vector and a bivector is interior-product vector plus exterior-product trivector. (Commutator product is zero.) In two-dimensional space, this geometric product rotates the vector. In three-dimensional space, if, for example, vector is a1 * i and bivector is a2 * e23 + b2 * e31 + c2 * e12, geometric product is a1 * i * a2 * e23 + a1 * i * b2 * e31 + a1 * i * c2 * e12 = - a1 * a2 * e123 + + a1 * b2 * j - a1 * c2 * k.

Geometric product of two bivectors is interior-product scalar plus commutator-product bivector plus exterior-product quadrivector. Three-dimensional spaces have no exterior-product quadrivector. For example, if first bivector is a1 * e23 + b1 * e31 + c1 * e12 and second bivector is a2 * e23 + b2 * e31 + c2 * e12, geometric product is - a1 * a2 - b1 * b2 - c1 * c2 + (c1 * b2 - b1 * c2) * e23 + (a1 * c3 - c1 * a3) * e31 + (b1 * a2 - a1 * b2) * e12. Commutator product makes a plane segment. If first bivector is a2 * e23 and second bivector is a2 * e23, geometric product is 0. If first bivector is a1 * e23 and second bivector is b2 * e31, geometric product is a1 * b2 * e23 * e31 = - a1 * b2 * e12.

Related Topics in Table of Contents

Mathematical Sciences>Calculus>Vector>Operations>Product

Whole Section in One File

3-Calculus-Vector-Operations-Product

Drawings

Drawings

Contents and Indexes of Topics, Names, and Works

Outline of Knowledge Database Home Page

Contents

Glossary

Topic Index

Name Index

Works Index

Searching

Search Form

Database Information, Disclaimer, Privacy Statement, and Rights

Description of Outline of Knowledge Database

Notation

Disclaimer

Copyright Not Claimed

Privacy Statement

References and Bibliography

Consciousness Bibliography

Technical Information

Date Modified: 2022.0224